在数列An中,A1=1,An+1=2An+2的n次方。(1)设Bn=An/2的(次方减1),证明:Bn是等差数列。(2)求数列An
的前n项和。
解:吵瞎
1,A(n+1)=2An+2^n,友信
两边除以2^n得
A(n+1)/2^n=An/2^(n-1)+1,
即B(n+1)=Bn +1,
Bn是等差数列。
2,B1=A1=1,
则Bn=n,
即An=n2^(n-1)
Sn=1+2*2^1+3*2^2+....+n2^(n-1)
2Sn=2+2*2^2+3*2^3+....+n2^n,
相减得
Sn=n2^n-(1+2^1+2^2+...+2^(n-1))
=n2^n-(1-2^n)/(1-2)
=(n-1)2^n +1。好碰轮
bn = an/2^(n-1)
b<n-1> = a<n-1>/2^(n-2)
bn - b<n-1>
= an/2^(n-1) - a<n-1>/2^(n-2)
= (an - 2a<n-1> )/2^(n-1)
把 已知条孙基蔽件 a<n+1> = 2an+2^n 即 an = 2a<n-1> + 2^(n-1) 代入上式
bn - b<n-1>
= 2^(n-1)/2^(n-1)
= 1
因则州此 bn 是等差数列
b1 = a1/2^(1-1) = 1/1 = 1
bn = n
--------------------
an/2^(n-1) = n
所以锋团
an = n * 2^(n-1)