椭圆ax²+bx²=1与x+y-1=0相交于A,B两点,C是AB的中点,若AB的长为2根号2,OC的斜率为2分之根号2
原题应该是这样子吧:
椭圆段悄ax²+by²=1与直线X+Y-1=0相交于AB两点,C是AB中点,若|AB|=2√2,0为原点,OC斜率为√2/2 ,求a,b.
【解】设A(x1,y1),B(x2,y2),C(x0,y0)
联立:ax²+by²枝燃孝=1与x+y-1=0得
(a+b)x²-2bx+b-1=0
由韦达定理得:x1+x2=2b/(a+b),x1•x2=(b-1)/(a+b)。
|AB|=√2•√[2b/(a+b)]²-[4(b-1)/(a+b)]=2√2
整理得:a²+b²+3ab-a-b=0……①
又x0=(x1+x2)/2,即x0=b/(a+b)
y0=(y1+y2)/2=(-x1+1-x2+1)/2 即y0=a/(a+b)
OC斜率为√2/2 ,则猛稿y0/x0=a/b=√2/2…… ②
联立①②解得:a=1/3,b=√2/3.
相关内容
- 椭圆5X^2-Ky^2=1的一个焦点为(0,2),求k值.
- 椭圆ax²+bx²=1与x+y-1=0相交于A,B两点,C是AB的中点,若AB的长为2根号2,OC的斜率为2分之根号2
- 椭圆ax2+by2=1与直线x+y-1=0相交于A、B两点,C是AB的中点,若|AB|=2√2,O为坐标原点,OC的斜率为(√2)/
- 椭圆C,x^2/8+y^2/4=1上一点P(x0,y0)向圆O,x^2+y^2=4引两条切线PA,PB,A,B为切线,
- 椭圆C1:x2/a2+y2/b2=1(a>b>0)的上下焦点分别为F1、F2
- 椭圆C:a平方分之x平方+b平方分之y平方=1(a>b>0)的离心率为2分之根号3,长轴的端点与短
- 椭圆cx2/a2+y2/b2=1的一焦点F(1.0)e=1/2,设经过F的直线交椭圆于M N,MN中垂线交y轴于P(0,y0)求yo范围
- 椭圆c的一个焦点f恰好是抛物线Y^2=-4X的焦点,离心率是双曲线x^2-y^2=4离心率的倒数。1.