椭圆C,x^2/8+y^2/4=1上一点P(x0,y0)向圆O,x^2+y^2=4引两条切线PA,PB,A,B为切线,
过椭圆C:x^2/8+y^/4=1上一点P(x0,y0)向圆O:x^2+y^2=4引两条切线PA、PB、A、B为切点,如直线AB与X轴、Y轴交于M、N两点。
(1)若向量PA乘以PB=0,求P点坐标;
(2)求直线AB的方程(用x0,y0表示)
(3)求三角形面积的最小值.(0为原点)
要过程 图
过椭圆C:x^2/8+y^/4=1上一点P(x0,y0)向圆O:x^2+y^2=4引两条切线PA、PB、A、B为切点,兆裤衡如直线AB与X轴、Y轴交于M、N两点。
(1)若向量PA乘以PB=0,求族做P点坐标;
(2)求直线AB的方程(用x0,y0表示)
(纯银3)求三角形面积的最小值.(0为原点)
要过程 图
最佳答案错误闭竖
没看见
第一问是“若”吗?轿圆大!
第三问不能再接腔伏着用了啊
相关内容
- 椭圆5X^2-Ky^2=1的一个焦点为(0,2),求k值.
- 椭圆ax²+bx²=1与x+y-1=0相交于A,B两点,C是AB的中点,若AB的长为2根号2,OC的斜率为2分之根号2
- 椭圆ax2+by2=1与直线x+y-1=0相交于A、B两点,C是AB的中点,若|AB|=2√2,O为坐标原点,OC的斜率为(√2)/
- 椭圆C,x^2/8+y^2/4=1上一点P(x0,y0)向圆O,x^2+y^2=4引两条切线PA,PB,A,B为切线,
- 椭圆C1:x2/a2+y2/b2=1(a>b>0)的上下焦点分别为F1、F2
- 椭圆C:a平方分之x平方+b平方分之y平方=1(a>b>0)的离心率为2分之根号3,长轴的端点与短
- 椭圆cx2/a2+y2/b2=1的一焦点F(1.0)e=1/2,设经过F的直线交椭圆于M N,MN中垂线交y轴于P(0,y0)求yo范围
- 椭圆c的一个焦点f恰好是抛物线Y^2=-4X的焦点,离心率是双曲线x^2-y^2=4离心率的倒数。1.